Saurabh Paul, Christos Boutsidis, et al.
JMLR
Phrase-based machine translation like other data driven approaches, are often plagued by irregularities in the translations of words in morphologically rich languages. The phrase-pairs and the language models are unable to capture the long range dependencies which decide the inflection. This paper makes the first attempt at learning constraints between the language-pair where, the target language lacks rich linguistic resources, by automatically learning classifiers that prevent implausible phrases from being part of decoding and at the same time adds consistent phrases. The paper also shows that this approach improves translation quality on the English-Hindi language pair.
Saurabh Paul, Christos Boutsidis, et al.
JMLR
Joxan Jaffar
Journal of the ACM
Cristina Cornelio, Judy Goldsmith, et al.
JAIR
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023