Assembly and printing of micro and nano objects
Tobias Kraus, Laurent Malaquin, et al.
MicroTAS 2005
Warnings and reports on counterfeit diagnostic devices are released several times a year by regulators and public health agencies. Unfortunately, mishandling, altering, and counterfeiting point-of-care diagnostics (POCDs) and rapid diagnostic tests (RDTs) is lucrative, relatively simple and can lead to devastating consequences. Here, we demonstrate how to implement optical security codes in silicon- and nitrocellulose-based flow paths for device authentication using a smartphone. The codes are created by inkjet spotting inks directly on nitrocellulose or on micropillars. Codes containing up to 32 elements per mm2 and 8 colors can encode as many as 1045 combinations. Codes on silicon micropillars can be erased by setting a continuous flow path across the entire array of code elements or for nitrocellulose by simply wicking a liquid across the code. Static or labile code elements can further be formed on nitrocellulose to create a hidden code using poly(ethylene glycol) (PEG) or glycerol additives to the inks. More advanced codes having a specific deletion sequence can also be created in silicon microfluidic devices using an array of passive routing nodes, which activate in a particular, programmable sequence. Such codes are simple to fabricate, easy to view, and efficient in coding information; they can be ideally used in combination with information on a package to protect diagnostic devices from counterfeiting.
Tobias Kraus, Laurent Malaquin, et al.
MicroTAS 2005
Venkat Balagurusamy, Cyril Cabral, et al.
IBM J. Res. Dev
Onur Gökçe, Samuel Castonguay, et al.
Nature
Onur Gökçe, Samuel Castonguay, et al.
MicroTAS 2016