Tae Hyun Kim, Jian Ni, et al.
INFOCOM 2011
We consider a switch with uniform traffic operating under the MaxWeight scheduling algorithm. This traffic pattern is interesting to study in the heavy-traffic regime since the queue lengths exhibit a multi-dimensional state-space collapse. We use a Lyapunov-type drift technique to characterize the heavy-traffic behavior of the expectation of the sum queue lengths in steady-state. Specifically, in the case of Bernoulli arrivals, we show that the heavy-traffic scaled queue length is " n - 3 2 + 1 2n # . Our result implies that the MaxWeight algorithm has optimal queue-length scaling behavior in the heavy-traffic regime with respect to the size of a switch with a uniform traffic pattern. This settles the heavy-traffic version of an open conjecture.
Tae Hyun Kim, Jian Ni, et al.
INFOCOM 2011
Libin Jiang, Mathieu Leconte, et al.
IEEE Trans. Inf. Theory
Yingdong Lu, Siva Theja Maguluri, et al.
ACC 2017
Tae Hyun Kim, Jian Ni, et al.
IEEE/ACM TON