Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
We show that for any ε > 0, and positive integers k and q such that q ≥= 2k + 1, given a graph on N vertices that has a q-colorable induced sub graph of (1 - ε)N vertices, it is NP-hard to find an independent set of N/qk+1 vertices. This substantially improves upon the work of Dinur et al. [DKPS] who gave a corresponding bound of N/q2. Our result implies that for any positive integer k, given a graph that has an independent set of ≈ (2k + 1)-1 fraction of vertices, it is NP-hard to find an independent set of (2k + 1)-(k+1) fraction of vertices. This improves on the previous work of Engebretsen and Holmerin [EH] who proved a gap of ≈ 2-k vs 2-(k 2), which is best possible using techniques (including those of [EH]) based on the query efficient PCP of Samorodnitsky and Trevisan [3]. © 2012 IEEE.
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Raymond Wu, Jie Lu
ITA Conference 2007
Pradip Bose
VTS 1998
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum