Ajay Nagesh, Ganesh Ramakrishnan, et al.
EMNLP 2012
Bridging the lexical gap between the user's question and the question-answer pairs in the Q&A archives has been a major challenge for Q&A retrieval. State-of-the-art approaches address this issue by implicitly expanding the queries with additional words using statistical translation models. While useful, the effectiveness of these models is highly dependant on the availability of quality corpus in the absence of which they are troubled by noise issues. Moreover these models perform word based expansion in a context agnostic manner resulting in translation that might be mixed and fairly general. This results in degraded retrieval performance. In this work we address the above issues by extending the lexical word based translation model to incorporate semantic concepts (entities). We explore strategies to learn the translation probabilities between words and the concepts using the Q&A archives and a popular entity catalog. Experiments conducted on a large scale real data show that the proposed techniques are promising. © 2012 Association for Computational Linguistics.
Ajay Nagesh, Ganesh Ramakrishnan, et al.
EMNLP 2012
Amit Singh, Karthik Visweswariah
CIKM 2011
Sameep Mehta, Rakesh Pimplikar, et al.
EDBT 2013
Amit Singh
WWW 2012