John R. Kender, Rick Kjeldsen
IEEE Transactions on Pattern Analysis and Machine Intelligence
The ability to build and reason about models of the world is essential for situated language understanding. But evaluating world modeling capabilities in modern AI systems—especially those based on language models—has proven challenging, in large part because of the difficulty of disentangling conceptual knowledge about the world from knowledge of surface co-occurrence statistics. This paper presents Elements of World Knowledge (EWoK), a framework for evaluating language models’ understanding of the conceptual knowledge underlying world modeling. EWoK targets specific concepts from multiple knowledge domains known to be important for world modeling in humans, from social interactions (help, deceive) to spatial relations (left, right). Objects, agents, and locations in the items can be flexibly filled in, enabling easy generation of multiple controlled datasets. We then introduce EWoK-core-1.0, a dataset of 4,374 items covering 11 world knowledge domains. We evaluate 20 open-weights large language models (1.3B–70B parameters) and compare them with human performance. All tested models perform worse than humans, with results varying drastically across domains. Performance on social interactions and social properties was highest and performance on physical relations and spatial relations was lowest. Overall, this dataset highlights simple cases where even large models struggle and presents rich avenues for targeted research on LLM world modeling capabilities.
John R. Kender, Rick Kjeldsen
IEEE Transactions on Pattern Analysis and Machine Intelligence
Robert Farrell, Rajarshi Das, et al.
AAAI-SS 2010
Gaku Yamamoto, Hideki Tai, et al.
AAMAS 2008
Danila Seliayeu, Quinn Pham, et al.
CASCON 2024