Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Facility location decision is a critical element in strategic planning for a wide range of public sectors and business world. Maximal Covering Location Problem is one of the well-known models for facility location problems. Considering its NP-hard nature, numerous efforts have been devoted to the development of intelligent algorithms for this problem. In order to evaluate the quality of a given solution, we integrate k-interchange heuristic and extreme value theory to statistically estimate the upper bound of the global optimal objective value. Based on this statistical bound, a new simulated annealing algorithm is proposed to solve the maximal covering location problems. Computational results show that the proposed algorithm can obtain better near optimal solutions than the existing algorithms. ©2009 IEEE.
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Raymond Wu, Jie Lu
ITA Conference 2007
Pradip Bose
VTS 1998
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum