Susan L. Spraragen
International Conference on Design and Emotion 2010
We propose a method for constructing regression trees with range and region splitting. We present an efficient algorithm for computing the optimal two-dimensional region that minimizes the mean squared error of an objective numeric attribute in a given database. As two-dimensional regions, we consider a class R of grid-regions, such as "x-monotone," "rectilinear-convex," and "rectangular," in the plane associated with two numeric attributes. We compute the optimal region R ε R. We propose to use a test that splits data into those that lie inside the region R and those that lie outside the region in the construction of regression trees. Experiments confirm that the use of region splitting gives compact and accurate regression trees in many domains.
Susan L. Spraragen
International Conference on Design and Emotion 2010
Yale Song, Zhen Wen, et al.
IJCAI 2013
Aditya Saxena, Shambhavi Shanker, et al.
AGU 2025
Giuseppe Romano, Aakrati Jain, et al.
ECTC 2025