Outlier detection with autoencoder ensembles
Jinghui Chen, Saket Sathe, et al.
SDM 2017
Effectively managing the data generated by Large-area Community driven Sensor Networks (LCSNs) is a new and challenging problem. One important step for managing and querying such sensor network data is to create abstractions of the data in the form of models. These models can then be stored, retrieved, and queried, as required. In our OpenSense1 project, we advocate an adaptive model-cover driven strategy towards effectively managing such data. Our strategy is designed considering the fundamental principles of LCSNs. We describe an adaptive approach, called adaptive k-means, and report preliminary results on how it compares with the traditional grid-based approach towards modeling LCSN data. We find that our approach performs better to model the sensed phenomenon in spatial and temporal dimensions. Our results are based on two real datasets. © 2012 ACM.
Jinghui Chen, Saket Sathe, et al.
SDM 2017
Sue Ann Chen, Arun Vishwanath, et al.
ISGT ASIA 2015
Liang Duan, Shuai Ma, et al.
KAIS
Saket Sathe, Charu Aggarwal
SDM 2016