Zijian Ding, Michelle Brachman, et al.
C&C 2025
Optical identification is often done with spatial or temporal visual pattern recognition and localization. Temporal pattern recognition, depending on the technology, involves a trade-off between communication frequency, range, and accurate tracking. We propose a solution with light-emitting beacons that improves this trade-off by exploiting fast event-based cameras and, for tracking, sparse neuromorphic optical flow computed with spiking neurons. The system is embedded in a simulated drone and evaluated in an asset monitoring use case. It is robust to relative movements and enables simultaneous communication with, and tracking of, multiple moving beacons. Finally, in a hardware lab prototype, we demonstrate for the first time beacon tracking performed simultaneously with state-of-the-art frequency communication in the kHz range.
Zijian Ding, Michelle Brachman, et al.
C&C 2025
S. Winograd
Journal of the ACM
Lars Graf, Thomas Bohnstingl, et al.
NeurIPS 2025
Miao Guo, Yong Tao Pei, et al.
WCITS 2011