Michael Picheny, Zoltan Tuske, et al.
INTERSPEECH 2019
We propose Diverse Embedding Neural Network (DENN), a novel architecture for language models (LMs). A DENNLM projects the input word history vector onto multiple diverse low-dimensional sub-spaces instead of a single higher-dimensional sub-space as in conventional feed-forward neural network LMs. We encourage these sub-spaces to be diverse during network training through an augmented loss function. Our language modeling experiments on the Penn Treebank data set show the performance benefit of using a DENNLM.
Michael Picheny, Zoltan Tuske, et al.
INTERSPEECH 2019
Po-Sen Huang, Haim Avron, et al.
ICASSP 2014
Bhuvana Ramabhadran, Jing Huang, et al.
INTERSPEECH - Eurospeech 2003
Asaf Rendel, Raul Fernandez, et al.
ICASSP 2016