Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
We introduce a new convolution kernel for labeled ordered trees with arbitrary subgraph features, and an efficient algorithm for computing the kernel with the same time complexity as that of the parse tree kernel. The proposed kernel is extended to allow mutations of labels and structures without increasing the order of computation time. Moreover, as a limit of generalization of the tree kernels, we show a hardness result in computing kernels for unordered rooted labeled trees with arbitrary subgraph features.
Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
Ankit Vishnubhotla, Charlotte Loh, et al.
NeurIPS 2023
John R. Kender, Rick Kjeldsen
IEEE Transactions on Pattern Analysis and Machine Intelligence
Masami Akamine, Jitendra Ajmera
IEICE Trans Inf Syst