L Auslander, E Feig, et al.
Advances in Applied Mathematics
The purpose of this paper is to give a complete effective solution to the problem of computing radicals of polynomial ideals over general fields of arbitrary characteristic. We prove that Seidenberg's "Condition P" is both a necessary and sufficient property of the coefficient field in order to be able to perform this computation. Since Condition P is an expensive additional requirement on the ground field, we use derivations and ideal quotients to recover as much of the radical as possible. If we have a basis for the vector space of derivations on our ground field, then the problem of computing radicals can be reduced to computing pth roots of elements in finite dimensional algebras.
L Auslander, E Feig, et al.
Advances in Applied Mathematics
Martin C. Gutzwiller
Physica D: Nonlinear Phenomena
Fernando Martinez, Juntao Chen, et al.
AAAI 2025
Harpreet S. Sawhney
IS&T/SPIE Electronic Imaging 1994