Low-Resource Speech Recognition of 500-Word Vocabularies
Sabine Deligne, Ellen Eide, et al.
INTERSPEECH - Eurospeech 2001
Two deep parsing components, an English Slot Grammar (ESG) parser and a predicate-argument structure (PAS) builder, provide core linguistic analyses of both the questions and the text content used by IBM Watson™ to find and hypothesize answers. Specifically, these components are fundamental in question analysis, candidate generation, and analysis of passage evidence. As part of the Watson project, ESG was enhanced, and its performance on Jeopardy!™ questions and on established reference data was improved. PAS was built on top of ESG to support higher-level analytics. In this paper, we describe these components and illustrate how they are used in a pattern-based relation extraction component of Watson. We also provide quantitative results of evaluating the component-level performance of ESG parsing. © 1957-2012 IBM.
Sabine Deligne, Ellen Eide, et al.
INTERSPEECH - Eurospeech 2001
Rolf Clauberg
IBM J. Res. Dev
Rafae Bhatti, Elisa Bertino, et al.
Communications of the ACM
Yigal Hoffner, Simon Field, et al.
EDOC 2004