Gregory Czap, Kyungju Noh, et al.
APS Global Physics Summit 2025
Significant improvements in superconducting qubit coherence times have been achieved recently with 3-D microwave waveguide cavities coupled to transmon qubits. While many of the measurements in this direction have utilized superconducting aluminum cavities, other recent work has involved qubits coupled to copper cavities with coherence times approaching 0.1 ms. The copper provides a good path for thermalizing the cavity walls and qubit chip, although the substantial cavity loss makes conventional dispersive qubit measurements challenging. We are exploring various approaches for improving the quality factor of 3-D copper cavities, including electropolishing and coating with superconducting layers of tin. We have characterized these cavities on multiple cooldowns and found tin plating to be robust. In addition, we have performed coherence measurements on transmon qubits in these cavities and observed promising performance.
Gregory Czap, Kyungju Noh, et al.
APS Global Physics Summit 2025
Ming L. Yu
Physical Review B
J.R. Thompson, Yang Ren Sun, et al.
Physica A: Statistical Mechanics and its Applications
O.F. Schirmer, W. Berlinger, et al.
Solid State Communications