Edge guided single depth image super resolution
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
We apply confidence-scoring techniques to verify the output of an off-line handwritten-character recognizer. We evaluate a variety of scoring functions, including likelihood ratios and estimated posterior probabilities of correctness, in a post-processing mode, to generate confidence scores. Using the post-processor in conjunction with a neural-netbased recognizer, on mixed-case letters, receiver-operatingcharacteristic (ROC) curves reveal that our post-processor is able to reject correctly 90% of recognizer errors while only falsely rejecting 18.6% of correctly-recognized letters. For isolated-digit recognition, we achieve a correct rejection rate of 95%while keeping false rejection down to 8.7%.
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
Eugene H. Ratzlaff
ICDAR 2001
Ritendra Datta, Jianying Hu, et al.
ICPR 2008
Srideepika Jayaraman, Chandra Reddy, et al.
Big Data 2021