Joy Y. Cheng, Daniel P. Sanders, et al.
SPIE Advanced Lithography 2008
We investigate conductance through contacts created by pressing a hard tip, as used in scanning tunneling microscopy, against substrates. Two different substrates are considered, one a normal metal (Cu) and another a semi-metal (graphite). Our study involves the molecular dynamics simulations for the atomic structure during the growth of the contact, and selfconsistent field electronic structure calculations of deformed bodies. We develop a theory predicting the conductance variations as the tip approaches the surface. We offer an explanation for a quasiperiodic variation of conductance of the contact on the graphite surface, a behavior which is dramatically different from contacts on normal metals. © 1999 Elsevier Science B.V. All rights reserved.
Joy Y. Cheng, Daniel P. Sanders, et al.
SPIE Advanced Lithography 2008
Surendra B. Anantharaman, Joachim Kohlbrecher, et al.
MRS Fall Meeting 2020
A. Nagarajan, S. Mukherjee, et al.
Journal of Applied Mechanics, Transactions ASME
S. Cohen, J.C. Liu, et al.
MRS Spring Meeting 1999