Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
We consider the problem of estimating the conditional probability of a label in time O(log n), where n is the number of possible labels. We analyze a natural reduction of this problem to a set of binary regression problems organized in a tree structure, proving a regret bound that scales with the depth of the tree. Motivated by this analysis, we propose the first online algorithm which provably constructs a logarithmic depth tree on the set of labels to solve this problem. We test the algorithm empirically, showing that it works succesfully on a dataset with roughly 106 labels.
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Miao Guo, Yong Tao Pei, et al.
WCITS 2011