Gang Wang, Fei Wang, et al.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
Discriminative training of the feature space using the minimum phone error objective function has been shown to yield remarkable accuracy improvements. These gains, however, come at a high cost of memory. In this paper we present techniques that maintain fMPE performance while reducing the required memory by approximately 94%. This is achieved by designing a quantization methodology which minimizes the error between the true fMPE computation and that produced with the quantized parameters. Also illustrated is a Viterbi search over the allocation of quantization levels, providing a framework for optimal non-uniform allocation of quantization levels over the dimensions of the fMPE feature vector. This provides an additional 8% relative reduction in required memory with no loss in recognition accuracy. Copyright © 2009 ISCA.
Gang Wang, Fei Wang, et al.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
Atsuyoshi Nakamura, Naoki Abe
Electronic Commerce Research
Kun Wang, Juwei Shi, et al.
PACT 2011
David G. Novick, John Karat, et al.
CHI EA 1997