Masami Akamine, Jitendra Ajmera
IEICE Trans Inf Syst
We present results of computational experiments with an extension of the Perceptron algorithm by a special type of simulated annealing. The simulated annealing procedure employs a logarithmic cooling schedule c(k) = Γ/1n(k + 2), where Γ is a parameter that depends on the underlying configuration space. For sample sets S of n-dimensional vectors generated by randomly chosen polynomials w1 · x1a1 + ··· + wn · xnan ≥ θ, we try to approximate the positive and negative examples by linear threshold functions. The approximations are computed by both the classical Perceptron algorithm and our extension with logarithmic cooling schedules. For n = 256, ... , 1024 and ai = 3, ... , 7, the extension outperforms the classical Perceptron algorithm by about 15% when the sample size is sufficiently large. The parameter Γ was chosen according to estimations of the maximum escape depth from local minima of the associated energy landscape.
Masami Akamine, Jitendra Ajmera
IEICE Trans Inf Syst
Ben Fei, Jinbai Liu
IEEE Transactions on Neural Networks
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Ryan Johnson, Ippokratis Pandis
CIDR 2013