Custom-Design of FDR Encodings: The Case of Red-Black Planning
Daniel Fišer, Daniel Gnad, et al.
IJCAI 2021
Accurate and explainable health event predictions are becoming crucial for healthcare providers to develop care plans for patients. The availability of electronic health records (EHR) has enabled machine learning advances in providing these predictions. However, many deep-learning-based methods are not satisfactory in solving several key challenges: 1) effectively utilizing disease domain knowledge; 2) collaboratively learning representations of patients and diseases; and 3) incorporating unstructured features. To address these issues, we propose a collaborative graph learning model to explore patient-disease interactions and medical domain knowledge. Our solution is able to capture structural features of both patients and diseases. The proposed model also utilizes unstructured text data by employing an attention manipulating strategy and then integrates attentive text features into a sequential learning process. We conduct extensive experiments on two important healthcare problems to show the competitive prediction performance of the proposed method compared with various state-of-the-art models. We also confirm the effectiveness of learned representations and model interpretability by a set of ablation and case studies.
Daniel Fišer, Daniel Gnad, et al.
IJCAI 2021
Junheng Hao, Chuan Lei, et al.
KDD 2021
Bobak Pezeshki, Radu Marinescu, et al.
UAI 2022
Saneem Chemmengath, Vishwajeet Kumar, et al.
EMNLP 2021