Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
We report here recent progress in nanophotonics with single-wall carbon nanotubes (SWNTs). A photonic model structure, the planar λ/2- microcavity, modifies the photonic density of modes at the location of the embedded SWNTs. As a result, the radiative properties of the SWNTs are modified due to the enhancement or inhibition of the microcavity-controlled spontaneous emission (scattering) rate. We use single-molecule optical microscopy and spectroscopy to investigate individual SWNTs (bundles), spatially isolated and immobilized in the photonic structure, and to measure the microcavity-controlled emission (Raman and photoluminescence) characteristics. Ultimately, we demonstrate experimentally that the integration of a field-effect transistor (FET) based on a single, semiconducting SWNT with a λ/2-microcavity results in a strong spectral and angular narrowing of the electrically excited and cavity-enhanced infrared radiation emitted by the nano-light source. Integrated nanophotonic devices based on carbon nanotubes hold great promise for application in quantum optics and optical communication.
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Imran Nasim, Michael E. Henderson
Mathematics
Jianke Yang, Robin Walters, et al.
ICML 2023