A. Gupta, R. Gross, et al.
SPIE Advances in Semiconductors and Superconductors 1990
The influence of the recently proposed camel's back structure of the GaP conduction band edge on the exciton spectrum is investigated theoretically. The results are in good agreement with differential absorption data and strongly support a camel's back structure, with a 4 meV central hump. The computed exciton binding energy is 18.5 meV, and when combined with recent experimental data, indicates a binding of about 32 meV for the electron-hole liquid. © 1978.
A. Gupta, R. Gross, et al.
SPIE Advances in Semiconductors and Superconductors 1990
Gregory Czap, Kyungju Noh, et al.
APS Global Physics Summit 2025
Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering
William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010