Sonia Cafieri, Jon Lee, et al.
Journal of Global Optimization
Let A be a normal matrix with eigenvalues λ1, λ2,..., λn, and let G{cyrillic} denote the smallest disc containing these eigenvalues. We give some inequalities relating the center and radius of G{cyrillic} to the entries in A. When applied to Hermitian matrices our results give lower bounds on the spread maxij(λi - λj) of A. When applied to positive definite Hermitian matrices they give lower bounds on the Kantorovich ratio maxij(λi - λj)/(λi + λj). © 1994.
Sonia Cafieri, Jon Lee, et al.
Journal of Global Optimization
Corneliu Constantinescu
SPIE Optical Engineering + Applications 2009
Harpreet S. Sawhney
IS&T/SPIE Electronic Imaging 1994
Hang-Yip Liu, Steffen Schulze, et al.
Proceedings of SPIE - The International Society for Optical Engineering