Hisashi Kashima, Tsuyoshi Id́e, et al.
IEICE Transactions on Information and Systems
In this paper we deal with the problem of detecting and segmenting objects in textured dark-field digital imagery for automated visual-inspection applications. We first present a technique for correcting optical shading effects in conventional dark-field microscopy. After compensating for possible imperfections in the optical setting we address the problem of segmenting objects (defects) in textured dark-field images. The technique that we will follow is based on a sequential application of local operators, which serves the purpose of clustering the object and the background gray levels. This procedure can be considered an extension of average-thresholding-type techniques. Both algorithms for shading correction and object segmentation have fast implementations in general-purpose image-processing pipeline architectures, and therefore they are appealing to real-time computer vision applications. Computational examples showing the appropriateness of the shading-correction procedure as well as the effectiveness of the segmentation wil be discussed. © 1985 Optical Society of America.
Hisashi Kashima, Tsuyoshi Id́e, et al.
IEICE Transactions on Information and Systems
Luís Henrique Neves Villaça, Sean Wolfgand Matsui Siqueira, et al.
SBSI 2023
Hans-Werner Fink, Heinz Schmid, et al.
Journal of the Optical Society of America A: Optics and Image Science, and Vision
T. Syeda-Mahmood
Computer Vision and Image Understanding