Sankar Basu
Journal of the Franklin Institute
Let σ: R → R be such that for some polynomial P, σ P is bounded. We consider the linear span of the functions {σ(λ · (x - t)): λ, t ε{lunate} Rs}. We prove that unless σ is itself a polynomial, it is possible to uniformly approximate any continuous function on Rs arbitrarily well on every compact subset of Rs by functions in this span. Under more specific conditions on σ, we give algorithms to achieve this approximation and obtain Jackson-type theorems to estimate the degree of approximation. © 1992.
Sankar Basu
Journal of the Franklin Institute
David Cash, Dennis Hofheinz, et al.
Journal of Cryptology
A.R. Gourlay, G. Kaye, et al.
Proceedings of SPIE 1989
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992