Naga Ayachitula, Melissa Buco, et al.
SCC 2007
Adaptive distributed-arithmetic echo cancellers are well suited for full-duplex high-speed data transmission. They allow a simpler implementation than adaptive linear transversal filters, since multiplications are replaced by table look-up and shift-and-add operations. Various trade-offs between the number of operations and the number of memory locations of the look-up tables can be achieved by segmenting the echo canceller into filter sections of shorter length. Adaptivity is achieved by a decisiondirected stochastic gradient algorithm to adjust the contents of the look-up tables. In this paper, we adopt the mean-square error criterion to investigate the convergence behavior of adaptive distributed-arithmetic echo cancellers. Under the assumption that the look-up values are statistically independent of the symbols stored in the echo canceller delay line, we obtain an analytical expression for the mean-square error as a function of time. The maximum speed of convergence and the corresponding optimum adaptation gain are also determined. Simulation results for a fullduplex quaternary Partial-Response Class-IV communications system are presented and compared with the theoretical results.
Naga Ayachitula, Melissa Buco, et al.
SCC 2007
Daniel J. Costello Jr., Pierre R. Chevillat, et al.
ISIT 1997
Martin Charles Golumbic, Renu C. Laskar
Discrete Applied Mathematics
Robert F. Gordon, Edward A. MacNair, et al.
WSC 1985