True 3-D displays for avionics and mission crewstations
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
The channel rectilinear Steiner tree problem is to construct an optimal rectilinear Steiner tree interconnecting n terminals on the upper shore and the lower shore of a channel without crossing any obstacles inside the channel. However, intersecting boundaries of obstacles is allowed. We present an algorithm that computes an optimal channel rectilinear Steiner tree in O(F1(k)n + F2(k)) time, where k is the number of obstacles inside the channel and F1 and F2 are exponential functions of k. For any constant k the proposed algorithm runs in O(n) time. Copyright © 1991 John Wiley & Sons, Ltd.
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
James Lee Hafner
Journal of Number Theory
Kenneth L. Clarkson, K. Georg Hampel, et al.
VTC Spring 2007
Tong Zhang, G.H. Golub, et al.
Linear Algebra and Its Applications