Robert F. Gordon, Edward A. MacNair, et al.
WSC 1985
Our interest lies in solving sum of squares (SOS) relaxations of large-scale unconstrained polynomial optimization problems. Because interior-point methods for solving these problems are severely limited by the large-scale, we are motivated to explore efficient implementations of an accelerated first-order method to solve this class of problems. By exploiting special structural properties of this problem class, we greatly reduce the computational cost of the first-order method at each iteration. We report promising computational results as well as a curious observation about the behaviour of the first-order method for the SOS relaxations of the unconstrained polynomial optimization problem. © 2013 Copyright Taylor and Francis Group, LLC.
Robert F. Gordon, Edward A. MacNair, et al.
WSC 1985
W.C. Tang, H. Rosen, et al.
SPIE Optics, Electro-Optics, and Laser Applications in Science and Engineering 1991
Kafai Lai, Alan E. Rosenbluth, et al.
SPIE Advanced Lithography 2007
Richard M. Karp, Raymond E. Miller
Journal of Computer and System Sciences