Edge guided single depth image super resolution
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
In this paper we investigate a novel method for adoptively improving the machine recognition of handwritten words by applying a k-Nearest Neighbor (k-NN) classifier to the N-best word-hypothesis lists generated by a writer-independent Hidden Markov Model (HMM). Each new N-best list from the HMM is compared to the N-best lists in the k-NN classifier. A decision module is used to select between the output of the HMM and the matches found by the k-NN classifier. The N-best list chosen by the decision module can be automatically added to the k-NN classifier if it is not already in the k-NN classifier. This dynamic update of the k-NN classifier enables the system to adapt to new data without retraining. On a writer-independent set of 1158 handwritten words, this method reduces the error rate by approximately 30%. This method is fast and memory-efficient, and lends itself to many interesting generalizations.
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
Eugene H. Ratzlaff
ICDAR 2001
Ritendra Datta, Jianying Hu, et al.
ICPR 2008
Nicholas Mastronarde, Deepak S. Turaga, et al.
ICIP 2006