Global routing revisited
Michael D. Moffitt
ICCAD 2009
We consider the problem of online linear regression on individual sequences. The goal in this paper is for the forecaster to output sequential predictions which are, after T time rounds, almost as good as the ones output by the best linear predictor in a given ℓ1-ball in Rd. We consider both the cases where the dimension d is small and large relative to the time horizon T. We first present regret bounds with optimal dependencies on d, T, and on the sizes U, X and Y of the ℓ1-ball, the input data and the observations. The minimax regret is shown to exhibit a regime transition around the point d=TUX/(2Y). Furthermore, we present efficient algorithms that are adaptive, i.e., that do not require the knowledge of U, X, Y, and T, but still achieve nearly optimal regret bounds. © 2013 Elsevier B.V.
Michael D. Moffitt
ICCAD 2009
David A. Selby
IBM J. Res. Dev
William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
Liqun Chen, Matthias Enzmann, et al.
FC 2005