Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
Multi-Class Processing Networks describe a set of servers that perform multiple classes of jobs on different items. A useful and tractable way to find an optimal control for such a network is to approximate it by a fluid model, resulting in a Separated Continuous Linear Programming (SCLP) problem. Clearly, arrival and service rates in such systems suffer from inherent uncertainty. A recent study addressed this issue by formulating a Robust Counterpart for SCLP models with budgeted uncertainty which provides a solution in terms of processing rates. This solution is transformed into a sequencing policy. However, in cases where servers can process several jobs simultaneously, a sequencing policy cannot be implemented. In this paper, we propose to use in these cases a a resource allocation policy, namely, the proportion of server effort per class. We formulate Robust Counterparts of both processing rates and server-effort uncertain models for four types of uncertainty sets: box, budgeted, one-sided budgeted, and polyhedral. We prove that server-effort model provides a better robust solution than any algebraic transformation of the robust solution of the processing rates model. Finally, to get a grasp of how much our new model improves over the processing rates robust model, we provide results of some numerical experiments.
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Imran Nasim, Michael E. Henderson
Mathematics
Jianke Yang, Robin Walters, et al.
ICML 2023