Uncovering and Quantifying Social Biases in Code Generation
Yan Liu, Xiaokang Chen, et al.
NeurIPS 2023
We present a generative model of natural language sentences and demonstrate its application to semantic parsing. In the generative process, a logical form sampled from a prior, and conditioned on this logical form, a grammar probabilistically generates the output sentence. Grammar induction using MCMC is applied to learn the grammar given a set of labeled sentences with corresponding logical forms. We develop a semantic parser that finds the logical form with the highest posterior probability exactly. We obtain strong results on the GeoQuery dataset and achieve state-of-the-art F1 on Jobs.
Yan Liu, Xiaokang Chen, et al.
NeurIPS 2023
Alexander Timms, Abigail Langbridge, et al.
AAAI 2025
Buse Korkmaz, Rahul Nair, et al.
AAAI 2025
Igor Melnyk, Vijil Chenthamarakshan, et al.
ICML 2023