Edge guided single depth image super resolution
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
This paper presents a new semi-supervised clustering framework to the recognition of heavily degraded characters in historical typewritten documents, where off-the-shelf OCR typically fails. The constraints are generated using typographical (collection-independent) domain knowledge and are used to guide both sample (glyph set) partitioning and metric learning. Experimental results using simple features provide encouraging evidence that this approach can lead to significantly improved clustering results compared to simple K-Means clustering, as well as to clustering using a state-of-the art OCR engine. © 2009 IEEE.
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
Ritendra Datta, Jianying Hu, et al.
ICPR 2008
Eugene H. Ratzlaff
ICDAR 2001
Srideepika Jayaraman, Chandra Reddy, et al.
Big Data 2021