J. Tersoff
Applied Surface Science
Brain-inspired computing emerged as a forefront technology to harness the growing amount of data generated in an increasingly connected society. The complex dynamics involving short- and long-term memory are key to the undisputed performance of biological neural networks. Here, we report on sub-µm-sized artificial synaptic weights exploiting a combination of a ferroelectric space charge effect and oxidation state modulation in the oxide channel of a ferroelectric field effect transistor. They lead to a quasi-continuous resistance tuning of the synapse by a factor of 60 and a fine-grained weight update of more than 200 resistance values. We leverage a fast, saturating ferroelectric effect and a slow, ionic drift and diffusion process to engineer a multi-timescale artificial synapse. Our device demonstrates an endurance of more than 10 10 cycles, a ferroelectric retention of more than 10 years, and various types of volatility behavior on distinct timescales, making it well suited for neuromorphic and cognitive computing.
J. Tersoff
Applied Surface Science
Corneliu Constantinescu
SPIE Optical Engineering + Applications 2009
A.B. McLean, R.H. Williams
Journal of Physics C: Solid State Physics
S.F. Fan, W.B. Yun, et al.
Proceedings of SPIE 1989