Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Statistic estimation such as output size estimation of operators is a well-studied subject in the database research community, mainly for the purpose of query optimization. The assumption, however, is that queries are ad-hoc and therefore the emphasis has been on capturing the data distribution. When long standing continuous queries on a changing database are concerned, a more direct approach, namely building an estimation model for each operator, is possible. In this paper, we propose a novel learning-based method. Our method consists of two steps. The first step is to design a dedicated feature extraction algorithm that can be used incrementally to obtain feature values from the underlying data. The second step is to use a data mining algorithm to generate an estimation model based on the feature values extracted from the historical data. To illustrate the approach, this paper studies the case of similarity-based searches over streaming time series. Experimental results show this approach provides accurate statistic estimates with a low overhead. Copyright 2003 ACM.
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Raymond Wu, Jie Lu
ITA Conference 2007
Pradip Bose
VTS 1998
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum