Byungchul Tak, Shu Tao, et al.
IC2E 2016
User generated reviews is a highly informative source of information, that has recently gained lots of attention in the recommender systems community. In this work we propose a generative latent variable model that explains both observed ratings and textual reviews. This latent variable model allows to combine any traditional collaborative fltering method, together with any deep learning architecture for text processing. Experimental results on four benchmark datasets demonstrate its superiority comparing to all baseline recommender systems. Furthermore, a running time analysis shows that this approach is in order of magnitude faster that relevant baselines. Moreover, underlying our solution there is a general framework that may be further explored.
Byungchul Tak, Shu Tao, et al.
IC2E 2016
Kevin Gu, Eva Tuecke, et al.
ICML 2024
Kristjan Greenewald, Yuancheng Yu, et al.
NeurIPS 2024
Zongyuan Ge, Sergey Demyanov, et al.
BMVC 2017