Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
A thermal infrared imager of competitive sensitivity and very simple construction is presented. It is a pyroelectric device of 96 pixels, based on ferroelectric polyvinylidene fluoride (PVDF). It uses a novel charge-dispensing multiplexer based on ordinary light emitting diodes to achieve a noise-equivalent temperature change (NEΔT) of 0.13 K at a 5 Hz frame rate (2.1 Hz BW). Design information, theory, and measured performance are presented. Achieving such a low total system cost requires the use of the very least expensive optical system, a moulded polyethylene Fresnel lens, whose advantages and limitations are discussed. Several possible improvements, aggregating approximately 30 dB in sensitivity are also discussed, leading to the interesting possibility of few-millikelvin NEΔT values with an uncooled pyroelectric device of extremely low cost.
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Imran Nasim, Michael E. Henderson
Mathematics
Jianke Yang, Robin Walters, et al.
ICML 2023